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In brief

High-dimensional longitudinal data are

prevalent yet understudied in biological

literature. Discovering meaningful

patterns from these datasets is an

important task. Though few methods are

available for visualizing high-dimensional

longitudinal data, they are not studied

extensively in real-world biological

datasets. A recently developed nonlinear

dimensionality reduction technique,

Aligned-UMAP, analyzes sequential data.

Here, we give an overview of applications

of Aligned-UMAP on various biomedical

datasets.
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THE BIGGER PICTURE Longitudinal multi-dimensional biological datasets are ubiquitous and highly abun-
dant. These datasets are essential to understanding disease progression, identifying subtypes, and discov-
ering drugs. Discovering meaningful patterns or disease pathophysiologies in these datasets is challenging
due to their high dimensionality, making it difficult to visualize hidden patterns. In this work, we applied
Aligned-UMAP on a broad spectrum of clinical, imaging, proteomics, and single-cell datasets. Aligned-
UMAP reveals time-dependent hidden patterns when color coded with the metadata. Altogether, based
on its ease of use and our evaluation of its performance on different modalities, we anticipate that
Aligned-UMAP will be a valuable tool for the biomedical community.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
High-dimensional data analysis starts with projecting the data to low dimensions to visualize and understand
the underlying data structure. Several methods have been developed for dimensionality reduction, but they
are limited to cross-sectional datasets. The recently proposed Aligned-UMAP, an extension of the uniform
manifold approximation and projection (UMAP) algorithm, can visualize high-dimensional longitudinal data-
sets.We demonstrated its utility for researchers to identify exciting patterns and trajectories within enormous
datasets in biological sciences. We found that the algorithm parameters also play a crucial role and must be
tuned carefully to utilize the algorithm’s potential fully. We also discussed key points to remember and direc-
tions for future extensions of Aligned-UMAP. Further, we made our code open source to enhance the repro-
ducibility and applicability of our work. We believe our benchmarking study becomes more important as
more and more high-dimensional longitudinal data in biomedical research become available.
INTRODUCTION

Visualizing large-scale, high-dimensional datasets is the starting

step for any data exploratory analysis. Visualizing data is partic-

ularly useful for the biological community, where researchers rely

on hypothesis-free data-driven analytics to gain essential in-
This is an open access article und
sights and observe meaningful patterns from the data. The stan-

dard way of visualizing high-dimensional data is to project the

data into low-dimensional space, typically 2D or 3D, while pre-

serving local and global relationships. This transformation is

called dimension reduction and belongs to the unsupervisedma-

chine learning algorithms class. The lower-dimensional data
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space can guide us in various tasks, such as identifying clusters,

substructures, and outliers; detecting batch effects; and quality

control measures to perform reliable and accurate downstream

analyses.

In contrast to traditional methods for dimensionality reduc-

tion—for example, principal-component analysis (PCA)1—uni-

form manifold approximation and projection (UMAP)2 learns a

nonlinear embedding of the original space by optimizing the

embedding coordinates of individual data points using iterative

algorithms. It aims to accurately preserve the original local neigh-

borhood of each data point in the visualization. Because of the

expressiveness of nonlinear embeddings, UMAP is well re-

garded for its state-of-the-art empirical performance at eluci-

dating sophisticated manifold structures. The biomedical com-

munity widely adopts UMAP for multiple studies ranging from

single-cell RNA sequencing (RNA-seq) data3 to genetics4,5 or

complex clinical symptoms3,6 to depict exciting patterns from

the data. In these use cases, UMAP is explored on datasets

assuming that all samples in the dataset are independent.

Despite the prevalence of nonindependent high-dimensional

biological datasets, the application of UMAP in this area is little

explored. This nonindependence effect can occur frommeasure-

ments at different time intervals, age, or other discrete/contin-

uous variables. There are various longitudinal datasets of

different modalities such as clinical symptoms, magnetic reso-

nance imaging (MRI), electronic health records (EHRs), electro-

encephalography (EEG) for sleep monitoring, electrocardiogram

(ECG) data, etc. Since UMAP is a stochastic algorithm, different

runs with the same hyperparameters can yield different results;

therefore, extension to longitudinal datasets is not straightfor-

ward, unlike traditional algorithms such as PCA. Aligned-UMAP

is a recently introduced dimensionality reduction approach for

temporal data by the authors of UMAP (https://umap-learn.

readthedocs.io/en/latest/aligned_umap_basic_usage.html). It is

based on the UMAP2 and MAPPER7 algorithms. MAPPER is a

well-known topological data analysis method that successfully

studies temporal, unbiased transcriptional regulation patterns.8

Aligned-UMAP imposes time constraints in the low-dimensional

embeddings, thereby controlling the stochasticity of its cross-

sectional counterpart along the longitudinal axis. TimeCluster9

is another approach that reduces the dimensionality of time-se-

ries data. Though it is possible to discover clusters with similar

trajectories using TimeCluster, their intrinsic longitudinal varia-

tion cannot be observed. Further, it requires data availability for

every time instance, making it less applicable for most biological

datasets.

In this work, we deep dive into the applications of Aligned-

UMAP on various longitudinal biological datasets. We applied

the algorithm to clinical data, brain images, longitudinal proteo-

mic data, EHRs, and ECG datasets. We demonstrated its utility

for researchers to identify excitingpatternsand trajectorieswithin

enormousdatasets. Secondly, we show the effect of different pa-

rameters of Aligned-UMAP on the lower-dimension space. We

also performed computation time analysis with varying datasets

as a factor of the number of CPU cores. Furthermore, we de-

ployed an interactive data visualization tool for reproducibility

and transparency, motivated by open science. A deeper investi-

gationof observedpatterns could revealmoredetailed,meaning-

ful information, which is out of the scope of this work.
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RESULTS

Overview of the Aligned-UMAP method
UMAP

UMAP is a dimensionality reduction method that learns a

nonlinear low-dimensional embedding of the original high-

dimensional space. UMAP has solid theoretical foundations

based on manifold theory and tries to preserve both local and

some global structures better than other popular techniques

such as t-distributed stochastic neighbor embedding (t-SNE).

UMAP is a graph-based dimensionality reduction method.

It has two phases—first, computation of a weighted nearest-

neighbor graph from the high-dimensional dataset. In the

second phase, a low-dimensional layout is computed by opti-

mizing the objective function that preserves desired character-

istics of this nearest-neighbor graph. The algorithm is computa-

tionally efficient with the time order of sample size for the

low-dimensional optimization phase but is essentially bounded

by the log-linear complexity of the nearest-neighbor search

phase in practical scenarios.10 It is the superior run time

performance of UMAP compared with its counterparts that

makes it very popular among the dimensionality reduction

methods.3

Aligned-UMAP

Aligned-UMAP is a recently introduced dimensionality reduction

approach for temporal data. The trivial way of performing dimen-

sionality reduction on longitudinal data is to apply UMAP inde-

pendently at different time steps and align the embedding using

a Procrustes transformation on related points. However,

Aligned-UMAP optimizes both embeddings simultaneously

using a regularizer term to provide better alignments in general.

The MAPPER algorithm is used to get the regularizer term,

which enforces the constraint on how far related points can

take different locations in embeddings at multiple time points.

Further details for the algorithm can be found on the UMAP

documentation website (https://umap-learn.readthedocs.io/en/

latest/aligned_umap_basic_usage.html). Figure 1 shows the

pipeline of our analysis workflow.

Software output and reproducibility
A demo of the Aligned-UMAP visualization is available at https://

alignedumap-biomedicaldata.streamlit.app. The data analysis

pipeline for this work was performed in Python 3.8 using open-

source libraries (numpy, pandas, plotly, umap). Our code is pub-

licly available at https://github.com/NIH-CARD/AlignedUMAP-

BiomedicalData to facilitate replication and future expansion of

our work. The repository is well documented and includes a

description of the data preprocessing, statistical, and machine

learning analyses used in this study.

Visualizing high-dimensional longitudinal data
We study Aligned-UMAP in a wide range of biomedical datasets

from multiple data modalities. Table 1 shows the statistics of

various datasets, with the count of samples ranging from

approximately 500 to 21,000. These datasets vary in both the

number of time sequences and the number of features available.

For every visualization, each representative point becomes a

thread through the time axis as their relative position changes

in the low-dimensional space.

https://umap-learn.readthedocs.io/en/latest/aligned_umap_basic_usage.html
https://umap-learn.readthedocs.io/en/latest/aligned_umap_basic_usage.html
https://umap-learn.readthedocs.io/en/latest/aligned_umap_basic_usage.html
https://umap-learn.readthedocs.io/en/latest/aligned_umap_basic_usage.html
https://alignedumap-biomedicaldata.streamlit.app/
https://alignedumap-biomedicaldata.streamlit.app/
https://github.com/NIH-CARD/AlignedUMAP-BiomedicalData
https://github.com/NIH-CARD/AlignedUMAP-BiomedicalData


Figure 1. The workflow of analysis and model development
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Clinical data

In neurodegenerative diseases such as Alzheimer’s and Parkin-

son’s, the individual can manifest disease in various ways, often-

times prior to clinical diagnosis. We evaluate the Aligned-UMAP

algorithm on the clinical assessment data from Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI) and Parkinson’s Progres-

sion Marker Initiative (PPMI) study cohorts. The ADNI study in-

cludes patients with Alzheimer’s, mild cognitive impairment

subjects, and elderly controls. The PPMI study has subjects

recently diagnosed with Parkinson’s disease (PD) and healthy

controls. These studies collect data for many clinical assess-

ments related to movement and cognitive disability to monitor

disease progression. All suchmeasurements are recorded longi-

tudinally at separate visits. The time duration of such visits can

range from years to decades.

We preprocess the ADNI and PPMI cohort datasets following

the strategy proposed in previous disease subtyping

studies.11,12,14 UMAP and Aligned-UMAP successfully pulled

together clusters corresponding to populations with similar dis-

ease progression (Figures 2A and 2B). However, longitudinal

differences got lost in the UMAP version due to its stochastic na-

ture. Aligned-UMAP separates the rapidly progressive PD sub-

group from the healthy control group and demonstrates diver-

gence of the rapid PD subgroup from healthy controls with

aging (Figure 2A). Furthermore, Aligned-UMAP reveals distinct

longitudinal courses for dementia and the healthy control group

(Figure 2B). We follow a continuum spectrum from lower pro-

gressive to high progressive subgroups for PD and dementia

subjects. These results suggest that Aligned-UMAP could be

used as a hypothesis-generating tool to identify distinct sub-

types based on disease progression. For instance, a particular

subgroup shows rapid decline in clinical symptoms such as

MDS-Unified Parkinson’s Disease Rating Scale21 or MoCA

cognitive assessment22 comparedwith healthy control and other

subgroups.

Whole-lung single-cell RNA (scRNA) data

Single-cell transcriptomics (scRNA) using next-generation tran-

script sequencing (RNA-seq) has recently received much atten-

tion due to its ability to uncover cellular heterogeneity, cellular
differentiation, and development mechanisms. UMAP has

demonstrated its efficacy in analyzing single-cell datasets by

identifying clusters of related cells. Modeling gene expression

trajectories of different cell types have been successfully used

to understand cell-cell communication routes in various chronic

diseases such as lung disease and tumor cells.19,23 We evalu-

ated Aligned-UMAP on whole-lung scRNA data of mice under-

going regeneration after bleomycin-induced lung injury.19 Tran-

scriptomic profiles of 29,297 cells were collected from six time

points (days 3, 7, 10, 14, 21, and 28). We observe clusters of

cell types showing different cellular dynamics through the regen-

eration process (Figure 2C); mesothelial cells show a spike at

day 14 and start returning to their healthy state (day 0), thereby

suggesting the role of mesothelial cells in bleomycin-related

lung injury. This way, we could extract hidden longitudinal pat-

terns from high-dimensional time-series datasets using

Aligned-UMAP.

Imaging data

Imaging is a pervasive way of monitoring the disease progres-

sion of multiple disorders. We use the advanced normalization

tools (ANTs) pipeline16 to extract structural features such as

the volume and area of different brain regions from the MRI T1

image. Since the number of longitudinal images for each subject

is scarce, we use the imaging features to model aging trajec-

tories. To be precise, we relate images if they are observed at

similar age groups instead of relating subjects based on their

visits. Also, these relations are constrained by different diagnosis

groups (i.e., control, PD, or dementia). Figure 2D shows various

aging courses based on the subject’s latest diagnosis and

gender. We noticed a more rapid decline among female demen-

tia cases versus male dementia cases around 80 years of age.

This suggests the nonlinear and distinct patterns of disease pro-

gression across groups within a disease. We observed distinct

longitudinal trajectory patterns, which might be a possible way

tomonitor disease progression (further investigation of trajectory

patterns is out of scope of this work).

EHR data

EHRs are a systematic collection of patients’ healthcare records

in a digital format. EHRs are adopted in many hospitals in the US
Patterns 4, 100741, June 9, 2023 3



Table 1. Dataset overview and statistics

Dataset Modality No. samples No. features No. time sequences

PPMI clinical data11–13 clinical assessment 476 122 6

ADNI clinical data14,15 clinical assessment 435 78 4

PPMI-ADNI T1 MRI13,15,16 MRI T1 imaging 2,836 406 52

MIMIC-III17 EHR 36,675 64 6

Longitudinal proteomic COVID-1918 proteomics 383 1,463 3

Longitudinal whole-lung scRNA19 scRNA 10,111 21,767 7

iPSC-derived neurons20 proteomics 18 4,959 6
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and UK.24 We applied the Aligned-UMAP on the MIMIC-III Crit-

ical Care Database,17 which consists of records of more than

40,000 patients in intensive care units (ICUs) of the Beth Israel

Deaconess Medical Center between 2001 and 2012. We prepro-

cessed the dataset following the methodology proposed by Lin

et al.25 Figure 2E shows the lower-dimensional space on the

MIMIC-III dataset frommeasurements recorded during the initial

72 h of entry to the ICU. We color the trajectories based on the

type of critical care unit a patient stays in just before discharge

from the hospital. We observe that UMAP could not recover

time-related patterns; however, Aligned-UMAP segregates tra-

jectories based on the patient’s critical care unit. This pattern re-

flects that it might be helpful to analyze ICU datasets stratified by

their care unit and suggests that the quality of care in ICUs is

highly variable.

COVID-19 proteomics data

Uncovering protein signatures associated with COVID-19 infec-

tion and severity can provide insights into its pathophysiology

and immune dysfunction.18 We utilized longitudinal proteomic

data on 306 COVID-19 patients.18 Aligned-UMAP has identified

distinct trajectories for severe and nonsevere patients over

7 days (Figure 2F). We observed the participants exhibiting

continued negative symptom trajectories at 7 days belonging

to more severe or longer COVID-19 infection.

iPSC-derived neuron proteomics data

Aligned-UMAP can be incorporated as a quality control measure

for longitudinal data. We applied this approach to longitudinal

proteomic profiling of the differentiation of iPSC (induced plurip-

otent stem cell)-derived neurons cultured in different bioreac-

tors.20 We could visualize distinct patterns of change for each

cell line grouped by their culture environment, thereby identifying

batch effects (Figure 2G). We observed that the cell lines

cultured only in the 2D bioreactor are hypervariable for almost

all time points (until day 28). The cell line 2D_3D (day 0–3 2D cul-

ture, day 4–28 3D culture) tends to converge around day 14, and

the cell line cultured in the 3D bioreactor tends to bemore homo-

geneous after around day 7. A tighter spread denotes a homoge-

neous group.

DISCUSSION

Observed meaningful patterns
Our work demonstrates that Aligned-UMAP could help us

discover meaningful longitudinal patterns by color coding them

based on multiple known covariates. Our analysis finds that

both UMAP and Aligned-UMAP help generate intuitive embed-
4 Patterns 4, 100741, June 9, 2023
dings because of their ability to preserve the global structure.

Additionally, Aligned-UMAP provides a view that highlights lon-

gitudinal structure by imposing time constraints in the embed-

dings, thereby controlling the stochasticity of its cross-sectional

counterpart. We observe distinct trajectory patterns of the data

from different modalities. Dementia and PD subtypes are delin-

eated using clinical assessment measurements from the PPMI

and ADNI studies (Figures 2A and 2B). Aligned-UMAP has also

shown visually meaningful patterns on high-dimensional omics

data such as proteomics (Figures 2F and 2G) or single-cell tran-

scriptomics data (Figure 2C). Therefore, it is evident that Aligned-

UMAP provides meaningful representations and is likely to be a

valuable tool for researchers working on multi-variate longitudi-

nal datasets by preserving the global and local trends along

the time axis.
Points to remember
Based on our observations from this study, this approach prom-

ises to be useful in many other biomedical datasets. These data-

sets can vary in terms of data missingness, time sequences, or

domain-specific variations that make it challenging to tune

experimental settings. So, here we discuss key points that users

should keep in mind while using Aligned-UMAP.

d Data missingness effect: the problem of missing data is

prevalent in healthcare datasets and can interfere with

the conclusions drawn from the data. Aligned-UMAP

can handle data missingness across the longitudinal

dimension by performing interpolation in low-dimensional

space. Tensor decomposition-based dimension reduction

approaches cannot handle any data missingness.9 How-

ever, none of the dimension reduction approaches are de-

signed to handle missingness for features measured

cross-sectionally.

d Aligned-UMAP parameter effect: the number of neighbors

and the minimum distance are two critical parameters

affecting the lower-dimensional space using the UMAP al-

gorithm. In Aligned-UMAP, the number of parameters can

increase significantly. We can vary the UMAP parameters

for each step to observe different trajectories. The two

other alignment parameters, namely, alignment window

size and alignment regularizer, are critical in visualizing

the longitudinal trend that controls the volatility along the

time axis. Figure 3 shows the effect of alignment window

size, alignment regularizer, and the number of neighbors

on the PPMI longitudinal dataset. Our web app also
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Figure 2. Low-dimensional embeddings by UMAP and

Aligned-UMAP dimensionality reduction algorithms on lon-

gitudinal biomedical datasets from multiple modalities

(A) The distinction between Parkinson’s disease subjects (with rapid

progressors) and healthy controls from 122 clinical measurements

collected over 5 years from Parkinson’s Progression Markers

Initiative (PPMI) study. Measures include MoCA scores and MDS-

Unified Parkinson’s Disease Rating Scale scores.

(B) Trajectories of dementia and healthy control subjects on 78

clinical measurements collected over 2 years from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) study. Measurements

include Mini-Mental State Exam (MMSE) scores and Alzheimer’s

Disease Assessment Scale-Cognitive Subscale (ADAS-COG) tests.

(C) Aligned-UMAP trajectories show shifts in specific cell types (such

as mesothelial and AT2 cells) in gene expression space during the

regeneration time course of mice having bleomycin lung injury.

(D) Aligned-UMAP embeddings depict aging patterns for patients

with dementia and Parkinson’s disease, stratified by gender.

(E) Trajectories of the subjects admitted in different critical care units

of the MIMIC-III database. Measurements include vital signs such as

blood pressure, oxygen levels, and ICD-9 diagnosis codes.

(F) Embedding space depicts the severity of COVID-19 disease from

1,463 unique plasma proteins measured by proximity extension

assay using the Olink platform. The cutoff at day 3 is visible because

of data unavailability at day 7 due to either patient recovery or death.

(G) Aligned-UMAP low-dimensional space identified the cell culture

environment of iPSC-derived neurons using longitudinal proteomic

data for more than 8,000 proteins. Note: we apply the Aligned-UMAP

algorithm on the dataset having characteristics shown in Table 1. In

this figure, we have demonstrated a subset of classes for better

visualization purposes. Formore detailed analysis, users can explore

our public web application.
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Figure 3. Effect of hyperparameters of Aligned-UMAP on the PPMI clinical dataset

The alignment regularization is varied for [0.003, 0.03], alignment window size from [1, 6], and number of neighbors from [5, 25]. We could observe that an increase

in the number of neighbors increases the size of visible clusters (1, 2). Alignment regularization and alignment window size are parameters of Aligned-UMAP that

controls the volatility of trajectories. Higher values for alignment regularization will keep the related embeddings closer (1, 5), and alignment window size captures

how far forward and backward across the datasets we look at when doing alignment (1, 3).
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6

demonstrates the impact of these parameters on the

lower-dimensional space.

d Execution time: we analyze the execution time taken by

both algorithms on multiple datasets and use their sub-

samples of different sizes. Further, to understand the al-

gorithm’s scalability and parallelization, we executed it

utilizing different numbers of cores (Figure 4). A multi-

core setup does not seem to improve run times of

Aligned-UMAP in low-data regimes, which may be attrib-

uted to intercore synchronization overheads. However,

significant improvements are observed on complete

lung scRNA data with 16 cores (Figure 4A). Compared

with UMAP, Aligned-UMAP would require a larger dataset

to have better parallelization on a multi-core machine

(Figure 4B).

d Stochastic models and reproducibility: although

Aligned-UMAP can handle stochasticity along the longi-

tudinal axis, it still produces variable embeddings

on different runs. Like UMAP, it uses randomness both

to speed up approximation steps and to aid in solving

optimization problems, thereby affecting the reproduc-

ibility of the lower-dimensional space. However, UMAP

and Aligned-UMAP provide relatively stable results

when applied to large amounts of data. In the future,

sophisticated approaches are required to ensure

reproducibility.
Future work
The Aligned-UMAP algorithm is still in the development phase.

We discuss the plausible extensions of the algorithm that might

be useful in a multitude of biomedical research datasets.
Patterns 4, 100741, June 9, 2023
d Clustering: the dimensionality reduction method is a stan-

dard preprocessing step to utilize density-based clustering

methods on the high-dimensional dataset. Dynamic time

warping is themost commonmetric to cluster time-varying

patterns using K-mean clustering. It will be interesting to

evaluate multiple clustering approaches on longitudinal

trajectories.

d Semi-supervised/supervised: sometimes, we would like to

incorporate target label information to project high-dimen-

sional data to lower-dimensional space in dimensionality

reduction. There are various reasons for supervised

dimension reduction: first, to retain the internal structure

of classes and have dense clusters; second, to maintain

the global structure, i.e., preservation of interrelationships

among the known classes; and finally, we can observe out-

liers or subjects that do not belong to either class using the

semi-supervised learning approach. The extension of

Aligned-UMAP for supervised/semi-supervised dimension

reduction will be a part of future work.

d Rare events detection: the UMAP algorithm supports

the detection of outliers using the local outlier factor26

algorithm. Identifying outliers from longitudinal trajec-

tories generated by Aligned-UMAP will need further

investigation.

d Multi-modal aspect: in the biomedical domain, monitoring

disease needs data frommultiple modalities such as imag-

ing, blood biomarkers, genetics, or multi-omics.27,28 Cur-

rent dimensionality reduction approaches are designed

for datasets with singlemodality. The trivial way of incorpo-

rating multi-modal data is to use vectorization, but it might

not be the optimal solution to discover hidden patterns in

the data. Therefore, evaluating and building new



Figure 4. Execution time for input datasets of varying sizes

(A) Comparison of Aligned-UMAP on multiple datasets.

(B) Comparison of Aligned-UMAP with UMAP on whole-lung scRNA dataset.

All experiments are conducted on a 128 GB RAM machine utilizing a different number of cores (marker symbol).
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dimensionality reduction approaches for multi-modal data

analysis setup is required.

d Interpretability: it is important to note that because UMAP

and t-SNE both necessarily warp the high-dimensional

shape of the data when projecting to lower dimensions,

any given axis or distance in lower dimensions still is not

directly interpretable in the way of techniques such as

PCA. However, PCA is highly influenced by outliers present

in the data, and its inability to capture nonlinear depen-

dencies causes a mix up among underlying clusters in

lower-dimensional space.

d Data frequency: since Aligned-UMAP creates a lower-

dimensional space for every location, analyzing data

collected at an extremely fine scale, such as ICU or ECG

spectrograms, becomes expensive.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests for information and resources used in this article should be ad-

dressed to Dr. Faraz Faghri (faraz@datatecnica.com).

Material availability

This study developed an interactive dashboard (https://alignedumap-

biomedicaldata.streamlit.app/) where researchers can investigate our analysis

and observe improved visualizations.

Data and code availability

The data used in this study was access controlled from the PPMI (http://www.

ppmi-info.org/) and the ADNI (https://adni.loni.usc.edu) and require individual

sign up to access the data. EHRs from MIMIC-III Critical Care Database were

downloaded from PhysioNet: https://physionet.org/content/mimiciii-demo/1.

4. Bulk and scRNA-seq data from mice whole lung are available via the

Gene Expression Omnibus with the accession code GEO: GSE141259.

COVID-19 longitudinal proteomic data have been downloaded fromMendeley

Data: https://doi.org/10.17632/nf853r8xsj. Additionally, we have developed

an interactive website (https://alignedumap-biomedicaldata.streamlit.app/)

where researchers can investigate components of the predictive model and

can investigate feature effects on a sample and cohort level. All other data re-

ported in this descriptor will be shared by the lead contact upon request. Any

additional information required to reanalyze the data reported in this descriptor

is available from the lead contact upon request.

To facilitate replication and expansion of our work, we have made the note-

book publicly available on GitHub at https://github.com/NIH-CARD/
AlignedUMAP-BiomedicalData. It includes all code, figures, models, and sup-

plements for this study. The code is part of the supplemental information; it in-

cludes the rendered Jupyter notebook with full step-by-step data preprocess-

ing, statistical, and machine learning analyses. All original code has been

deposited at Zenodo under Zenodo: https://doi.org/10.5281/zenodo.

7562874 and is publicly available as of the date of publication (Zenodo:

https://doi.org/10.5281/zenodo.7562874).

Methods

Data preprocessing

All datasets went through data processing before applying the Aligned-UMAP

algorithm. We follow the same methodology used in the cited publications

(Table 1). Here, we list the summary of the data processing details for each

of the datasets used in this work.

d PPMI clinical data11–13: these clinical data were obtained from the PPMI

(http://www.ppmi-info.org/). Data went through triage for missing data,

a 60 month assessment, and comprehensive phenotype collection. In

the study, we included only data from participants with 60 months of

follow up for PPMI. Overall, in the PPMI (n = 294 PD cases including

99 [34%] female; 154 controls including 58 [38%] female) passed the

triage. We color the trajectory based on progression-based subtypes

obtained from Dadu et al.12 We used the source code located at

https://github.com/anant-dadu/PDProgressionSubtypes.

d ADNI clinical data14,15: clinical assessment data for Alzheimer’s disease

were obtained from the ADNI database (https://adni.loni.usc.edu/). The

total scores and subscores from commonly collected cognitive, func-

tional, and longitudinal clinical data elements were aggregated to form

a 78-dimension feature vector. Missing valueswere imputed using linear

interpolation based on the past visit readings for the feature, avoiding

any influence of other observations during data imputation as per Sa-

tone et al.14 For our analysis, we utilized the code provided at https://

github.com/NIH-CARD/ADProgressionSubtypes.

d PPMI-ADNI T1MRI13,15,16: in this dataset, we used derived features that

include regional brain volumes, cortical thickness, and area as T1 MRI

imaging features. We used ANTsPyT1w available at https://github.

com/stnava/ANTsPyT1w to preprocess the images.

d MIMIC-III17: we utilized the data processing code available at https://

github.com/Jeffreylin0925/MIMIC-III_ICU_Readmission_Analysis to

generate features from EHRs. We used three categories of features

in this work, namely chart events, ICD-9 embeddings, and demo-

graphic information of the patients.25

We download the preprocessed version for the other three datasets using

the link provided in the relevant publications, longitudinal proteomic COVID-

19 from Filbin et al.,18 longitudinal whole-lung scRNA from Strunz et al.,19

and iPSC derived neurons from Reilly et al.20 On all these datasets, we applied
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min-max normalization to numerical features to preserve the longitudinal

relationships among the original data and ensure a zero-to-one range. Addi-

tionally, we outlined the specifics of data preparation in the readme file

of our publicly accessible GitHub repository (https://github.com/NIH-CARD/

AlignedUMAP-BiomedicalData#step1-prepare-data).

Statistical and machine learning analyses

After preparing the data, we perform unsupervised machine learning using the

Aligned-UMAP algorithm. We hypothesized that this approach could identify

the clusters with distinct trajectories over time. Since this work is an entirely un-

supervised analysis, we visualize 3D trajectory plots, color coded based on

metadata, to evaluate the algorithm’s performance.Weperformed extensive hy-

perparameter tuning with different sets of values for Aligned-UMAP parameters

(distance metric, alignment regularization, alignment window size, number of

neighbors, minimum distance). For additional information, please see section

2 of the readme file available in our GitHub repository at https://github.com/

NIH-CARD/AlignedUMAP-BiomedicalData#step2-setup-configuration-and-data-

paths. Finally, we analyze the time taken by Aligned-UMAPon all our datasets to

provide the estimate of execution time to the users (Figure 4).
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